Doğrunun Analitiği

  1. Doğrunun Analitik İncelenmesi



    Yukarıdaki şekillerde d doğrusunun farklı durumlarına karşılık oluşan a eğim açısı gösterilmiştir.
    Doğrunun denklemi:

    Bir doğru üzerindeki noktaların koordinatlarını veren eşitliğe doğrunun denklemi denir.
    y = mx + n

    y = mx + n eşitliğinde m: eğim, n: sabit sayıdır. ax + by + c = 0 şeklinde verilen denklemde y yalnız bırakılırsa

    elde edilir

    x in katsayısı eğimi verir.

    Öyle ise,

    ax + by + c = 0 doğrusunun eğimi


    Eğimi eşit olan doğrulara paralel doğrular denir. Doğruların eğimleri arasındaki bağıntıdan daha sonra bahsedeceğiz.

    2. İki Noktası Bilinen Doğrunun Eğim ve Denklemi

    a. İki noktası bilinen doğrunun eğimi



    Analitik düzlemde A(x1, y1), B(x2, y2) noktaları bilinen d doğrusu üzerinde A, B noktalarının koordinatları kullanılarak oluşturulan ABC üçgeninin A açısı ile d doğrusunun eğim açısı yöndeş açılar olduklarından eşittirler.

    Buradan


    olduğundan

    şeklinde de yazılabilir

    b. İki noktası bilinen doğrunun denklemi



    A(x1, y1), B(x2, y2) noktalarından geçen d doğrusu üzerinde doğruyu oluşturan noktaları temsil eden P(x, y) noktası alalım. Bu üç noktadan herhangi ikisini kullanarak yazacağımız eğimler eşittir. Buna göre,

    Bu eşitlik bize iki noktası bilinen doğru denklemini verir.


    şeklinde de yazılabilir. Sonuç aynıdır.
    Orijinden yani O(0,0) noktasından geçen doğrularda x = 0 için y = 0 olacağından

    y = mx + n denklemindeki n terimi sıfır olur.

    O halde orijinden geçen doğrunun eğimi m ise denklemi
    y= mx

    Doğru denklemi ax + by + c = 0 şeklinde ise ve orijinden geçiyorsa c = 0 dır.

    Doğru denklemi ax + by = 0 olur.

    3. Bir Noktası ve Eğimi Bilinen Doğrunun Denklemi
    A(x1, y1) noktasından geçen ve eğimi m olan doğru denklemi

    A(x1, y1) noktası ve P(x, y) noktası kullanılarak yazılan eğim değeri verilen eğime eşitlenir.

    4. Eksenlere Paralel Doğruların Denklemi

    a. Eksen doğruları



    Analitik düzlemde x (apsis) ekseninde bütün noktaların y si (ordinatı) sıfır olduğundan x ekseni aynı zamanda y = 0 doğrusudur.

    y (ordinat) ekseni de x = 0 doğrusudur.


    b. x eksenine paralel doğrular



    y = k doğrusu; y eksenini k noktasında keser, x eksenine paralel ve y eksenine diktir.

    c. y eksenine paralel doğrular



    x = k doğrusu;

    x eksenini k noktasında keser, y eksenine paralel ve x eksenine diktir.




    5. Eksenleri Kestiği Noktaları Bilinen Doğruların Denklemi



    x eksenini a noktasında y eksenini de b noktasında kesen doğrunun denklemi;


    Doğru (a, 0) ve (0, b) noktalarından geçtiğine göre, doğrunun denklemi iki noktadan geçen doğru denklemi özelliği kullanılarak da yazılabilir.

    Dik koordinat sisteminde apsisleri ordinatlarına eşit olan noktaların oluşturduğu doğruya y=x doğrusu denir.

    Dik koordinat sisteminde apsisleri ile ordinatları birbirinin ters işaretlisi olan noktaların oluşturduğu doğruya y= -x doğrusu denir.



    y = x ve y = –x doğruları aynı zamanda koordinat eksenlerinin açıortaylarıdır. Koordinat eksenleri ile yaptıkları açılar 45° dir.

    6. Doğruların Grafikleri

    Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur.

    x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır.

    7. İki Doğrunun Kesişmesi



    Analitik düzlemde alınan iki doğru paralel değilse bir noktada kesişirler.

    şekildeki d1 ve d2 doğrularının kesiştikleri P(x1,y1) noktasında her iki doğrunun apsisleri ve ordinatları eşittir.

    P(x1,y1) bulunabilmesi için x ve y değerleri eşitlenerek ortak çözüm yapılır.

    Doğru demeti: Bir noktadan geçen sonsuz tane doğruyu ifade eden denkleme doğru demeti denir.


    Kesişen iki doğrunun denklemlerinden birinin bir sayı ile çarpılıp diğeri ile toplanması sonucu oluşan yeni doğru bu iki doğrunun kesişim noktasından geçer. Bu doğru, bu noktadan geçen doğru demetinin bir elemanıdır.

    8. İki Doğru Arasındaki Açı

    a. İki doğrunun paralelliği



    İki doğru arasındaki açı 0 derece ise yani doğrular paralel ise x ekseni ile yaptıkları açılar eşit olacağından bu iki doğrunun eğimi eşittir.


    b. İki doğrunun dikliği:


    Dik koordinat düzleminde İki doğru arasındaki açı 90°

    ise yani doğrular dik ise

    d1: y = m1x + n1 d2: y = m2x + n2

    olan d1 ve d2 doğruları için



    c. İki doğru arasındaki açının tanjantı:



    Dik koordinat düzleminde

    d1: y = m1x + n1

    d2: y = m2x + n2

    doğruları arasındaki açı a derece ise Tga için


    m1 ile m2 nin yer değişmesi sonucun işaretini değiştirir. Tga pozitif ise, iki doğru arasındaki dar açının negatif ise geniş açının tg değerini verir.

    9. Bir Noktanın Bir Doğruya Uzaklığı



    Analitik düzlemde A(x1,y1) noktasının

    d: ax + by + c = 0

    doğrusuna olan uzaklığı
    formülü ile bulunabilir.


    a. Paralel iki doğru arasındaki uzunluk



    d1:ax + by + c1

    d2:ax + by + c2



    d1 ve d2 doğruları paralel olduğundan x ve y katsayıları eşitlenebilir.

    x ve y katsayıları eşitlendiğinde sabit terimler c1 ve c2 oluyor ise iki doğru arasındaki uzaklık


    d1 ve d2 doğrularının ortasından geçen doğrunun denklemi;


    b. Açıortay denklemi



    Kesişen iki doğrunun açıortayları dik kesişen iki doğrudur. [KL] ^ [PR]

    Açıortay üzerinde alınan noktaların kenarlara uzaklığı eşit olduğundan uzunlukları eşitleyerek yazacağımız denklem açıortay doğrularının denklemidir.

    d1: ax + by + c = 0 ve

    d2: dx + ey + f = 0 doğrularının açıortay denklemleri



    a2 + b2 = d2 + e2 eşitliği varsa açıortay doğrularının denklemleri

    (a ± d)x + (b ± e)y + (c ± f) = 0

    eşitliğinden yazılabilir.

    10. Simetri

    a. Bir noktaya göre simetri


    A noktasının B noktasına göre simetriği C noktasıdır. B orta noktadır.

    A(a, b) noktasının orijine göre simetriği A'(–a, –b) noktası olur.

    b. Bir doğruya göre simetri


    A noktasının d doğrusuna göre simetriği B noktası ise d doğrusu A ile B nin orta noktasından geçer ve [AB] ye diktir.





    Düzlemde farklı iki noktaya uzaklıkları eşit noktalar kümesine orta dikme doğrusu denir.

    A ve B noktalarının orta dikme doğrusu [AB] nin ortasından geçer ve [AB] ye diktir.

    y = x ve y = –x doğrularına göre simetri



    Bir P(a,b) noktasının y = x doğrusuna göre simetriği alınırken koordinatları yer değişir. Simetri noktası P'(b,a) olur.

    y = –x doğrusuna göre simetride ise koordinatlar hem yer hem de işaret değişirler. P"(–b,–a) olur.

    c. Bir doğrunun bir noktaya göre simetriği

    d1 doğrusunun B noktasına göre simetriği d2 doğrusu ise d1 // d2 ve |BD| = |BE|, |AB| = |BC| dir.



    Öyle ise d2 doğrusunu bulmak için d1 doğrusu üzerindeki herhangi bir noktanın B noktasına göre simetriği olan noktadan geçen ve d1 doğrusuna paralel olan doğrunun denklemini bulmak gerekir.

    d. Bir doğrunun bir doğruya göre simetriği



    d1 doğrusunun x eksenine göre simetriği olan d2 doğrusu şekildeki gibidir.

    d1 ve d2 doğrularının y eksenini kestikleri noktalar x eksenine göre birbirinin simetriğidirler.


    şekilde d1 ve d2 doğruları y eksenine göre birbirinin simetriği durumundadırlar.

    y = x doğrusuna göre d1 doğrusunun simetriği olan d2 doğrusu şekildeki gibidir. d1 doğrusunun x eksenini kestiği noktanın y = x doğrusuna göre simetriği d2 doğrusunun y eksenini kestiği noktadır.

     

     

    OnLyGirL - 16.04.2010 - 02:27



Benzer Konular

  1. İki Doğrunun Birbirine Göre Durumları
    Konuyu Açan: BiR-DOST, Forum: İlköğretim.
    Cevaplar: 1
    Son Mesaj : 03.01.2012, 20:25
  2. Doğrunun Yanında Olmak
    Konuyu Açan: MiSS-FENER, Forum: Yaşam Hikayeleri.
    Cevaplar: 0
    Son Mesaj : 31.10.2011, 00:08
  3. Doğrunun Eğimi - Lise 2 Geometri Konuları
    Konuyu Açan: BiR-DOST, Forum: Lise.
    Cevaplar: 0
    Son Mesaj : 10.09.2011, 01:57
  4. Doğrunun Analitik İncelenmesi
    Konuyu Açan: HaNıM aGa, Forum: Matematik.
    Cevaplar: 0
    Son Mesaj : 07.10.2009, 13:00

copyright

Soru Cevap

grafimx